3.471 \(\int \frac {x^5 (c+d x^3)^{3/2}}{(a+b x^3)^2} \, dx\)

Optimal. Leaf size=163 \[ -\frac {(2 b c-5 a d) \sqrt {b c-a d} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^3}}{\sqrt {b c-a d}}\right )}{3 b^{7/2}}+\frac {\sqrt {c+d x^3} (2 b c-5 a d)}{3 b^3}+\frac {\left (c+d x^3\right )^{3/2} (2 b c-5 a d)}{9 b^2 (b c-a d)}+\frac {a \left (c+d x^3\right )^{5/2}}{3 b \left (a+b x^3\right ) (b c-a d)} \]

[Out]

1/9*(-5*a*d+2*b*c)*(d*x^3+c)^(3/2)/b^2/(-a*d+b*c)+1/3*a*(d*x^3+c)^(5/2)/b/(-a*d+b*c)/(b*x^3+a)-1/3*(-5*a*d+2*b
*c)*arctanh(b^(1/2)*(d*x^3+c)^(1/2)/(-a*d+b*c)^(1/2))*(-a*d+b*c)^(1/2)/b^(7/2)+1/3*(-5*a*d+2*b*c)*(d*x^3+c)^(1
/2)/b^3

________________________________________________________________________________________

Rubi [A]  time = 0.14, antiderivative size = 163, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.208, Rules used = {446, 78, 50, 63, 208} \[ \frac {\left (c+d x^3\right )^{3/2} (2 b c-5 a d)}{9 b^2 (b c-a d)}+\frac {\sqrt {c+d x^3} (2 b c-5 a d)}{3 b^3}-\frac {(2 b c-5 a d) \sqrt {b c-a d} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^3}}{\sqrt {b c-a d}}\right )}{3 b^{7/2}}+\frac {a \left (c+d x^3\right )^{5/2}}{3 b \left (a+b x^3\right ) (b c-a d)} \]

Antiderivative was successfully verified.

[In]

Int[(x^5*(c + d*x^3)^(3/2))/(a + b*x^3)^2,x]

[Out]

((2*b*c - 5*a*d)*Sqrt[c + d*x^3])/(3*b^3) + ((2*b*c - 5*a*d)*(c + d*x^3)^(3/2))/(9*b^2*(b*c - a*d)) + (a*(c +
d*x^3)^(5/2))/(3*b*(b*c - a*d)*(a + b*x^3)) - ((2*b*c - 5*a*d)*Sqrt[b*c - a*d]*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^3
])/Sqrt[b*c - a*d]])/(3*b^(7/2))

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 78

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> -Simp[((b*e - a*f
)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(f*(p + 1)*(c*f - d*e)), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1)
+ c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f,
 n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ
[p, n]))))

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {x^5 \left (c+d x^3\right )^{3/2}}{\left (a+b x^3\right )^2} \, dx &=\frac {1}{3} \operatorname {Subst}\left (\int \frac {x (c+d x)^{3/2}}{(a+b x)^2} \, dx,x,x^3\right )\\ &=\frac {a \left (c+d x^3\right )^{5/2}}{3 b (b c-a d) \left (a+b x^3\right )}+\frac {(2 b c-5 a d) \operatorname {Subst}\left (\int \frac {(c+d x)^{3/2}}{a+b x} \, dx,x,x^3\right )}{6 b (b c-a d)}\\ &=\frac {(2 b c-5 a d) \left (c+d x^3\right )^{3/2}}{9 b^2 (b c-a d)}+\frac {a \left (c+d x^3\right )^{5/2}}{3 b (b c-a d) \left (a+b x^3\right )}+\frac {(2 b c-5 a d) \operatorname {Subst}\left (\int \frac {\sqrt {c+d x}}{a+b x} \, dx,x,x^3\right )}{6 b^2}\\ &=\frac {(2 b c-5 a d) \sqrt {c+d x^3}}{3 b^3}+\frac {(2 b c-5 a d) \left (c+d x^3\right )^{3/2}}{9 b^2 (b c-a d)}+\frac {a \left (c+d x^3\right )^{5/2}}{3 b (b c-a d) \left (a+b x^3\right )}+\frac {((2 b c-5 a d) (b c-a d)) \operatorname {Subst}\left (\int \frac {1}{(a+b x) \sqrt {c+d x}} \, dx,x,x^3\right )}{6 b^3}\\ &=\frac {(2 b c-5 a d) \sqrt {c+d x^3}}{3 b^3}+\frac {(2 b c-5 a d) \left (c+d x^3\right )^{3/2}}{9 b^2 (b c-a d)}+\frac {a \left (c+d x^3\right )^{5/2}}{3 b (b c-a d) \left (a+b x^3\right )}+\frac {((2 b c-5 a d) (b c-a d)) \operatorname {Subst}\left (\int \frac {1}{a-\frac {b c}{d}+\frac {b x^2}{d}} \, dx,x,\sqrt {c+d x^3}\right )}{3 b^3 d}\\ &=\frac {(2 b c-5 a d) \sqrt {c+d x^3}}{3 b^3}+\frac {(2 b c-5 a d) \left (c+d x^3\right )^{3/2}}{9 b^2 (b c-a d)}+\frac {a \left (c+d x^3\right )^{5/2}}{3 b (b c-a d) \left (a+b x^3\right )}-\frac {(2 b c-5 a d) \sqrt {b c-a d} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^3}}{\sqrt {b c-a d}}\right )}{3 b^{7/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.14, size = 125, normalized size = 0.77 \[ \frac {\sqrt {c+d x^3} \left (-15 a^2 d+a b \left (11 c-10 d x^3\right )+2 b^2 x^3 \left (4 c+d x^3\right )\right )}{9 b^3 \left (a+b x^3\right )}-\frac {(2 b c-5 a d) \sqrt {b c-a d} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^3}}{\sqrt {b c-a d}}\right )}{3 b^{7/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(x^5*(c + d*x^3)^(3/2))/(a + b*x^3)^2,x]

[Out]

(Sqrt[c + d*x^3]*(-15*a^2*d + a*b*(11*c - 10*d*x^3) + 2*b^2*x^3*(4*c + d*x^3)))/(9*b^3*(a + b*x^3)) - ((2*b*c
- 5*a*d)*Sqrt[b*c - a*d]*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^3])/Sqrt[b*c - a*d]])/(3*b^(7/2))

________________________________________________________________________________________

fricas [A]  time = 1.20, size = 314, normalized size = 1.93 \[ \left [-\frac {3 \, {\left ({\left (2 \, b^{2} c - 5 \, a b d\right )} x^{3} + 2 \, a b c - 5 \, a^{2} d\right )} \sqrt {\frac {b c - a d}{b}} \log \left (\frac {b d x^{3} + 2 \, b c - a d + 2 \, \sqrt {d x^{3} + c} b \sqrt {\frac {b c - a d}{b}}}{b x^{3} + a}\right ) - 2 \, {\left (2 \, b^{2} d x^{6} + 2 \, {\left (4 \, b^{2} c - 5 \, a b d\right )} x^{3} + 11 \, a b c - 15 \, a^{2} d\right )} \sqrt {d x^{3} + c}}{18 \, {\left (b^{4} x^{3} + a b^{3}\right )}}, -\frac {3 \, {\left ({\left (2 \, b^{2} c - 5 \, a b d\right )} x^{3} + 2 \, a b c - 5 \, a^{2} d\right )} \sqrt {-\frac {b c - a d}{b}} \arctan \left (-\frac {\sqrt {d x^{3} + c} b \sqrt {-\frac {b c - a d}{b}}}{b c - a d}\right ) - {\left (2 \, b^{2} d x^{6} + 2 \, {\left (4 \, b^{2} c - 5 \, a b d\right )} x^{3} + 11 \, a b c - 15 \, a^{2} d\right )} \sqrt {d x^{3} + c}}{9 \, {\left (b^{4} x^{3} + a b^{3}\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5*(d*x^3+c)^(3/2)/(b*x^3+a)^2,x, algorithm="fricas")

[Out]

[-1/18*(3*((2*b^2*c - 5*a*b*d)*x^3 + 2*a*b*c - 5*a^2*d)*sqrt((b*c - a*d)/b)*log((b*d*x^3 + 2*b*c - a*d + 2*sqr
t(d*x^3 + c)*b*sqrt((b*c - a*d)/b))/(b*x^3 + a)) - 2*(2*b^2*d*x^6 + 2*(4*b^2*c - 5*a*b*d)*x^3 + 11*a*b*c - 15*
a^2*d)*sqrt(d*x^3 + c))/(b^4*x^3 + a*b^3), -1/9*(3*((2*b^2*c - 5*a*b*d)*x^3 + 2*a*b*c - 5*a^2*d)*sqrt(-(b*c -
a*d)/b)*arctan(-sqrt(d*x^3 + c)*b*sqrt(-(b*c - a*d)/b)/(b*c - a*d)) - (2*b^2*d*x^6 + 2*(4*b^2*c - 5*a*b*d)*x^3
 + 11*a*b*c - 15*a^2*d)*sqrt(d*x^3 + c))/(b^4*x^3 + a*b^3)]

________________________________________________________________________________________

giac [A]  time = 0.19, size = 173, normalized size = 1.06 \[ \frac {{\left (2 \, b^{2} c^{2} - 7 \, a b c d + 5 \, a^{2} d^{2}\right )} \arctan \left (\frac {\sqrt {d x^{3} + c} b}{\sqrt {-b^{2} c + a b d}}\right )}{3 \, \sqrt {-b^{2} c + a b d} b^{3}} + \frac {\sqrt {d x^{3} + c} a b c d - \sqrt {d x^{3} + c} a^{2} d^{2}}{3 \, {\left ({\left (d x^{3} + c\right )} b - b c + a d\right )} b^{3}} + \frac {2 \, {\left ({\left (d x^{3} + c\right )}^{\frac {3}{2}} b^{4} + 3 \, \sqrt {d x^{3} + c} b^{4} c - 6 \, \sqrt {d x^{3} + c} a b^{3} d\right )}}{9 \, b^{6}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5*(d*x^3+c)^(3/2)/(b*x^3+a)^2,x, algorithm="giac")

[Out]

1/3*(2*b^2*c^2 - 7*a*b*c*d + 5*a^2*d^2)*arctan(sqrt(d*x^3 + c)*b/sqrt(-b^2*c + a*b*d))/(sqrt(-b^2*c + a*b*d)*b
^3) + 1/3*(sqrt(d*x^3 + c)*a*b*c*d - sqrt(d*x^3 + c)*a^2*d^2)/(((d*x^3 + c)*b - b*c + a*d)*b^3) + 2/9*((d*x^3
+ c)^(3/2)*b^4 + 3*sqrt(d*x^3 + c)*b^4*c - 6*sqrt(d*x^3 + c)*a*b^3*d)/b^6

________________________________________________________________________________________

maple [C]  time = 0.27, size = 983, normalized size = 6.03 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5*(d*x^3+c)^(3/2)/(b*x^3+a)^2,x)

[Out]

1/b*(2/9*(d*x^3+c)^(1/2)/b*d*x^3+2/3*(-2/3/b*c*d-(a*d-2*b*c)/b^2*d)*(d*x^3+c)^(1/2)/d+1/3*I/b^2/d^2*2^(1/2)*su
m((-a^2*d^2+2*a*b*c*d-b^2*c^2)/(a*d-b*c)*(-c*d^2)^(1/3)*(1/2*I*(2*x+(-I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3))
/d)/(-c*d^2)^(1/3)*d)^(1/2)*((x-(-c*d^2)^(1/3)/d)/(-3*(-c*d^2)^(1/3)+I*3^(1/2)*(-c*d^2)^(1/3))*d)^(1/2)*(-1/2*
I*(2*x+(I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3))/d)/(-c*d^2)^(1/3)*d)^(1/2)/(d*x^3+c)^(1/2)*(2*_alpha^2*d^2+I*
(-c*d^2)^(1/3)*3^(1/2)*_alpha*d-(-c*d^2)^(1/3)*_alpha*d-I*3^(1/2)*(-c*d^2)^(2/3)-(-c*d^2)^(2/3))*EllipticPi(1/
3*3^(1/2)*(I*(x+1/2*(-c*d^2)^(1/3)/d-1/2*I*3^(1/2)*(-c*d^2)^(1/3)/d)*3^(1/2)/(-c*d^2)^(1/3)*d)^(1/2),1/2*(2*I*
(-c*d^2)^(1/3)*3^(1/2)*_alpha^2*d+I*3^(1/2)*c*d-3*c*d-I*(-c*d^2)^(2/3)*3^(1/2)*_alpha-3*(-c*d^2)^(2/3)*_alpha)
/(a*d-b*c)*b/d,(I*3^(1/2)*(-c*d^2)^(1/3)/(-3/2*(-c*d^2)^(1/3)/d+1/2*I*3^(1/2)*(-c*d^2)^(1/3)/d)/d)^(1/2)),_alp
ha=RootOf(_Z^3*b+a)))-a/b*(1/3*(a*d-b*c)*(d*x^3+c)^(1/2)/(b*x^3+a)/b^2+2/3*(d*x^3+c)^(1/2)/b^2*d+1/2*I/d/b^2*2
^(1/2)*sum((-c*d^2)^(1/3)*(1/2*I*(2*x+(-I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3))/d)/(-c*d^2)^(1/3)*d)^(1/2)*((
x-(-c*d^2)^(1/3)/d)/(-3*(-c*d^2)^(1/3)+I*3^(1/2)*(-c*d^2)^(1/3))*d)^(1/2)*(-1/2*I*(2*x+(I*3^(1/2)*(-c*d^2)^(1/
3)+(-c*d^2)^(1/3))/d)/(-c*d^2)^(1/3)*d)^(1/2)/(d*x^3+c)^(1/2)*(2*_alpha^2*d^2+I*(-c*d^2)^(1/3)*3^(1/2)*_alpha*
d-(-c*d^2)^(1/3)*_alpha*d-I*3^(1/2)*(-c*d^2)^(2/3)-(-c*d^2)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2*(-c*d^2)^(
1/3)/d-1/2*I*3^(1/2)*(-c*d^2)^(1/3)/d)*3^(1/2)/(-c*d^2)^(1/3)*d)^(1/2),1/2*(2*I*(-c*d^2)^(1/3)*3^(1/2)*_alpha^
2*d+I*3^(1/2)*c*d-3*c*d-I*(-c*d^2)^(2/3)*3^(1/2)*_alpha-3*(-c*d^2)^(2/3)*_alpha)/(a*d-b*c)*b/d,(I*3^(1/2)*(-c*
d^2)^(1/3)/(-3/2*(-c*d^2)^(1/3)/d+1/2*I*3^(1/2)*(-c*d^2)^(1/3)/d)/d)^(1/2)),_alpha=RootOf(_Z^3*b+a)))

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5*(d*x^3+c)^(3/2)/(b*x^3+a)^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*d-b*c>0)', see `assume?` for
 more details)Is a*d-b*c positive or negative?

________________________________________________________________________________________

mupad [B]  time = 7.38, size = 229, normalized size = 1.40 \[ \frac {2\,d\,x^3\,\sqrt {d\,x^3+c}}{9\,b^2}-\frac {\sqrt {d\,x^3+c}\,\left (\frac {2\,d\,\left (a\,d-2\,b\,c\right )}{b^3}+\frac {2\,a\,d^2}{b^3}+\frac {4\,c\,d}{3\,b^2}\right )}{3\,d}+\frac {a\,\left (\frac {2\,b\,c^2}{3\,\left (2\,b^2\,c-2\,a\,b\,d\right )}+\frac {a\,\left (\frac {2\,a\,d^2}{3\,\left (2\,b^2\,c-2\,a\,b\,d\right )}-\frac {4\,b\,c\,d}{3\,\left (2\,b^2\,c-2\,a\,b\,d\right )}\right )}{b}\right )\,\sqrt {d\,x^3+c}}{b\,\left (b\,x^3+a\right )}+\frac {\ln \left (\frac {2\,b\,c-a\,d+b\,d\,x^3+\sqrt {b}\,\sqrt {d\,x^3+c}\,\sqrt {a\,d-b\,c}\,2{}\mathrm {i}}{b\,x^3+a}\right )\,\sqrt {a\,d-b\,c}\,\left (5\,a\,d-2\,b\,c\right )\,1{}\mathrm {i}}{6\,b^{7/2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^5*(c + d*x^3)^(3/2))/(a + b*x^3)^2,x)

[Out]

(2*d*x^3*(c + d*x^3)^(1/2))/(9*b^2) - ((c + d*x^3)^(1/2)*((2*d*(a*d - 2*b*c))/b^3 + (2*a*d^2)/b^3 + (4*c*d)/(3
*b^2)))/(3*d) + (log((2*b*c - a*d + b^(1/2)*(c + d*x^3)^(1/2)*(a*d - b*c)^(1/2)*2i + b*d*x^3)/(a + b*x^3))*(a*
d - b*c)^(1/2)*(5*a*d - 2*b*c)*1i)/(6*b^(7/2)) + (a*((2*b*c^2)/(3*(2*b^2*c - 2*a*b*d)) + (a*((2*a*d^2)/(3*(2*b
^2*c - 2*a*b*d)) - (4*b*c*d)/(3*(2*b^2*c - 2*a*b*d))))/b)*(c + d*x^3)^(1/2))/(b*(a + b*x^3))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**5*(d*x**3+c)**(3/2)/(b*x**3+a)**2,x)

[Out]

Timed out

________________________________________________________________________________________